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Quadrature Signals: Complex, But Not Complicated 

 
by Richard Lyons 

 
Introduction 
 
Quadrature signals are based on the notion of complex numbers and perhaps no other topic 
causes more heartache for newcomers to DSP than these numbers and their strange terminology 
of j-operator, complex, imaginary, real, and orthogonal.  If you're a little unsure of the physical 
meaning of complex numbers and the j = -1  operator, don't feel bad because you're in good 
company.  Why even Karl Gauss, one the world's greatest mathematicians, called the j-operator 
the "shadow of shadows".  Here we'll shine some light on that shadow so you'll never have to 
call the Quadrature Signal Psychic Hotline for help. 
 
Quadrature signal processing is used in many fields of science and engineering, and quadrature 
signals are necessary to describe the processing and implementation that takes place in modern 
digital communications systems.  In this tutorial we'll review the fundamentals of complex 
numbers and get comfortable with how they're used to represent quadrature signals.  Next we 
examine the notion of negative frequency as it relates to quadrature signal algebraic notation, 
and learn to speak the language of quadrature processing.  In addition, we'll use three-
dimensional time and frequency-domain plots to give some physical meaning to quadrature 
signals.  This tutorial concludes with a brief look at how a quadrature signal can be generated by 
means of quadrature-sampling. 
 
Why Care About Quadrature Signals? 
 
Quadrature signal formats, also called complex signals, are used in many digital signal 
processing applications such as: 
 
 -  digital communications systems,  
 -  radar systems, 
 -  time difference of arrival processing in radio direction finding schemes 
 -  coherent pulse measurement systems,  
 -  antenna beamforming applications, 
 -  single sideband modulators, 
 -  etc. 
 
These applications fall in the general category known as quadrature processing, and they 
provide additional processing power through the coherent measurement of the phase of 
sinusoidal signals. 
 
A quadrature signal is a two-dimensional signal whose value at some instant in time can be 
specified by a single complex number having two parts; what we call the real part and the 
imaginary part.  (The words real and imaginary, although traditional, are unfortunate because 
their of meanings in our every day speech.  Communications engineers use the terms in-phase 
and quadrature phase.  More on that later.)  Let's review the mathematical notation of these 
complex numbers.  
 



The Development and Notation of Complex Numbers 
 
To establish our terminology, we define a real number to be those numbers we use in every day 
life, like a voltage, a temperature on the Fahrenheit scale, or the balance of your checking 
account.  These one-dimensional numbers can be either positive or negative as depicted in 
Figure 1(a).  In that figure we show a one-dimensional axis and say that a single real number can 
be represented by a point on that axis.  Out of tradition, let's call this axis, the Real axis. 
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Figure 1.  An graphical interpretation of a real number and a complex number. 
 
A complex number, c, is shown in Figure 1(b) where it's also represented as a point.  However, 
complex numbers are not restricted to lie on a one-dimensional line, but can reside anywhere on 
a two-dimensional plane.  That plane is called the complex plane (some mathematicians like to 
call it an Argand diagram), and it enables us to represent complex numbers having both real and 
imaginary parts.  For example in Figure 1(b), the complex number c = 2.5 + j2 is a point lying on 
the complex plane on neither the real nor the imaginary axis.  We locate point c by going +2.5 
units along the real axis and up +2 units along the imaginary axis.  Think of those real and 
imaginary axes exactly as you think of the East-West and North-South directions on a road map. 
 
We'll use a geometric viewpoint to help us understand some of the arithmetic of complex 
numbers.  Taking a look at Figure 2, we can use the trigonometry of right triangles to define 
several different ways of representing the complex number c. 
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Figure 2  The phasor representation of complex number c = a + jb on the complex plane. 
 
Our complex number c is represented in a number of different ways in the literature, such as: 
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 Math Expression: Remarks:  Notation
Name: 
Rectangular 

rm:  
 

c = a + jb 

o called the 

(1) 
fo

Used for explanatory 
purposes.  Easiest to 
understand. [Als
Cartesian form.] 

Trigonometric 
form:  

c = M[cos(φ) + jsin(φ)] scribe 

s. 

(2) Commonly used to de
quadrature signals in 
communications system

Polar form:  
  

c = Mejφ  
th 

etimes 

(3) Most puzzling, but the 
primary form used in ma
equations. [Also called the 
Exponential  form.  Som
written as Mexp(jφ).]  

Magnitude-
angle form:  

c = M∠φ  

lly 
a shorthand version of Eq. (3).]  

(4) Used for descriptive purposes, 
but too cumbersome for use in 
algebraic equations. [Essentia

 
Eqs. (3) and (4) remind us that c can also be considered the tip of a phasor on the complex pla
with magnitude M, in the direction of φ degrees relative to the positive real axis as shown in 
Figure 2.  Keep in mind that c is a complex number and the variables 

ne, 

a, b, M, and φ are all real 
umbers.  The magnitude of c, sometimes called the modulus of c, is 

M = |c| = 

n
 
  a2 + b2     (5)  

ed by many to be the greatest movie ever made, 
id a main character attempt to quote Eq. (5)?] 

 

 
[Trivia question:  In what 1939 movie, consider
d

 
 
 

imaginary pBack to business.  The phase angle φ, or argument, is the arctangent of the ratio  art
real part ,  or 

 

φ = tan -1 ⎝ ⎠ a 
 ⎜⎛ ⎟⎞

 b 
     (6)  

+ jsin(φ)] , we can state what's named in his 
onor and now called one of Euler's identities as: 

ejφ  =  cos(φ) + jsin(φ) (7)  

 
If we set Eq. (3) equal to Eq. (2), Mejφ = M[cos(φ) 
h
 
 

 
The suspicious reader should now be asking, "Why is it valid to represent a complex number using 
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We 
by 

o 
nating terms in the third line are the 

ries expansion definitions of the cosine and sine functions. 
 

 e   =  1  +  z  +  2!

that strange expression of the base of the natural logarithms, e, raised to an imaginary power?"  
can validate Eq. (7) as did the world's greatest expert on infinite series, Herr Leonard Euler, 
plugging jφ in for z in the series expansion definition of ez in the top line of Figure 3.  That 
substitution is shown on the second line.  Next we evaluate the higher orders of j to arrive at the 
series in the third line in the figure.  Those of you with elevated math skills like Euler (or those wh
check some math reference book) will recognize that the alter
se

z  z2 
  +  3!

 z3  z4  z5 
  +  4!   +  5!   +  6!

 z6 
  +  ...  

 e   =  1  +  jφ  +  
2

jφ  (jφ)  
2!   +  

3

!
 (jφ)  

3   +  
4

4!
 (jφ)  

  +  
5

5!
 (jφ)  

  +  
6

6!
 (jφ)  

  +  ...  

 ejφ  φ2 
  =  1   +   jφ   -  2!    - j 

 φ3 
3!    +   4!

 φ4 
   + j 5!

 φ5 
   -  6!

 φ6 
   +  ...  

 
 e    =   cos(φ)    +    jsin(φ) 

Figure 3  One derivation of Euler's equation using series expansions for ez, cos(φ), and sin(φ). 

 of Figure 3, you'd end up with a slightly 
ifferent, and very useful, form of Euler's identity: 

e-jφ  =  cos(φ) - jsin(φ) (8)  

he polar form of Eqs. (7) and (8) benefits us because: 
 

- 

rs. 
the addition of complex numbers (vector addition), 

- It'  of how digital communications system are implemented, and described in the 
literature. 

 applications.  But first, let’s take a deep breath and enter the Twilight Zone of 
at 'j' operator. 

jφ

 

 
Figure 3 verifies Eq. (7) and our representation of a complex number using the Eq. (3) polar 
form: Mejφ.  If you substitute -jφ for z in the top line
d
 
 

 
T

It simplifies mathematical derivations and analysis, 
-- turning trigonometric equations into the simple algebra of exponents, and 
-- math operations on complex numbers follow exactly the same rules as real numbe

- It makes adding signals merely 
- It's the most concise notation,  

s indicative

 
We'll be using Eqs. (7) and (8) to see why and how quadrature signals are used in digital 
communications
th
 
You've seen the definition j = -1 before.  Stated in words, we say that j represents a number 
when multiplied by itself results in a negative one.  Well, this definition causes difficulty for the
beginner because we all know that any number multiplied by itself always results in a positive 
number.  (Unfortunately DSP textbooks often define j and then, with justified haste, swiftly carry
on with all the ways that the j operator ca  be used to analyze sinuso dal signals.  Reader
forget about the question: What does j = 

 

 
n i s soon 
-1 actually mean?)  Well, -1 had been on the 

mathematical scene for some time, but wasn't taken seriously until it had to be used to solve 



cubic equations in the sixteenth century. [1], [2]  Mathematicians reluctantly began to accept the 
abstract concept of -1, without having to visualize it, because its mathematical properties were 
onsistent with the arithmetic of normal real numbers. c

 
It was Euler's equating complex numbers to real sines and cosines, and Gauss' brilliant 
introduction of the complex plane, that finally legitimized the notion of -1 to Europe's 
mathematicians in the eighteenth century.  Euler, going beyond the province of real numb
showed that complex numbers had a clean consistent relationship to the well-known real 
trigonometric functions of sines and cosines.  As Einstein showed the equivalence of mass an
energy, Euler showed the equivalence of real sines and cosines to complex numbers.  Just as 
modern-day physicists don’t know what an electron is but they understand its properties, we’ll 
not worry about what 'j' is and be satisfied with understanding its behavior.  For our purposes, 
the j-operator means rotate a complex number by 90o counterclock

ers, 

d 

wise.  (For you good folk in 
e UK, counterclockwise means anti-clockwise.)  Let's see why. 

y 
xamining the mathematical properties of the j = 

th
 
We'll get comfortable with the complex plane representation of imaginary numbers b
e -1 operator as shown in Figure 4. 
 

-8 8

Imaginary
axis

0

j8

-j8

Real
axis

= multiply by "j"

 
 

Figure 4.  What happens to the real number 8 when you start multiplying it by j. 

 

s 

lt 
onversely, multiplication by -j results in a clockwise 

tation of -90o on the complex plane.) 

 we let φ = π/2 in Eq. 7, we can say that  

jπ/2 π/2) + jsin(π/2)  =  0 + j1 ,  or 

ejπ/2  =  j (9)  

 
Multiplying any number on the real axis by j results in an imaginary product that lies on the 
imaginary axis.  The example in Figure 4 shows that if +8 is represented by the dot lying on the
positive real axis, multiplying +8 by j results in an imaginary number, +j8, whose position has 
been rotated 90o counterclockwise (from +8) putting it on the positive imaginary axis.  Similarly, 
multiplying +j8 by j results in another 90o rotation yielding the -8 lying on the negative real axi
because j2 = -1.  Multiplying -8 by j results in a further 90o rotation giving the -j8 lying on the 
negative imaginary axis.  Whenever any number represented by a dot is multiplied by j the resu
is a counterclockwise rotation of 90o.  (C
ro
 
If
 
 e   =  cos(   
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Here's the point to remember.  If you have a single complex number, represented by a point on 
the complex plane, multiplying that number by j or by ejπ/2 will result in a new complex number 
that's rotated 90o counterclockwise (CCW) on the complex plane.  Don't forget this, as it will be 
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seful as you begin reading the literature of quadrature processing systems!  

zzled 

le was to validate Eqs. (2), (3), (7), 
nd (8).  Now, let's (finally!) talk about time-domain signals. 

epresenting Real Signals Using Complex Phasors

u
 
Let's pause for a moment here to catch our breath.  Don't worry if the ideas of imaginary 
numbers and the complex plane seem a little mysterious.  It's that way for everyone at first—
you'll get comfortable with them the more you use them.  (Remember, the j-operator pu
Europe's heavyweight mathematicians for hundreds of years.)  Granted, not only is the 
mathematics of complex numbers a bit strange at first, but the terminology is almost bizarre.  
While the term imaginary is an unfortunate one to use, the term complex is downright weird.  
When first encountered, the phrase complex numbers makes us think 'complicated numbers'.  
This is regrettable because the concept of complex numbers is not really all that complicated.  
Just know that the purpose of the above mathematical rigmaro
a
 
R  

 

t 
ts 

dot, 

t) orbiting in a clockwise direction because its phase angle gets more negative 
s time increases. 

 

 
OK, we now turn our attention to a complex number that is a function time.  Consider a number
whose magnitude is one, and whose phase angle increases with time.  That complex number is 
the ej2πfot point shown in Figure 5(a).  (Here the 2πfo term is frequency in radians/second, and i
corresponds to a frequency of fo cycles/second where fo is measured in Hertz.)  As time t ge
larger, the complex number's phase angle increases and our number orbits the origin of the 
complex plane in a CCW direction.  Figure 5(a) shows the number, represented by the black 
frozen at some arbitrary instant in time.  If, say, the frequency fo = 2 Hz, then the dot would 
rotate around the circle two times per second.  We can also think of another complex number 
e-j2πfot (the white do
a

t = time in seconds,
fo = frequency in Hertz
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Figure 5.  A snapshot, in time, of two complex numbers whose exponents change with time. 

me.  Those ej2πfot and e-j2πfot 
xpressions are often called complex exponentials in the literature. 

oal of representing real sinusoids in the 
ontext of the complex plane.  Don't touch that dial!   

 
Let's now call our two ej2πfot and e-j2πfot complex expressions  quadrature signals.  They each 
have both real and imaginary parts, and they are both functions of ti
e
 
We can also think of those two quadrature signals, ej2πfot and e-j2πfot, as the tips of two phasors 
rotating in opposite directions as shown in Figure 5(b).  We're going to stick with this phasor 
notation for now because it'll allow us to achieve our g
c
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e real and imaginary parts 

f ej2πfot are shown as the sine and cosine projections in Figure 6(b). 
 

To ensure that we understand the behavior of those phasors, Figure 6(a) shows the three-
dimensional path of the ej2πfot phasor as time passes.  We've added the time axis, coming out of 
the page, to show the spiral path of the phasor.  Figure 6(b) shows a continuous version of just 
the tip of the ej2πfot phasor.  That ej2πfot complex number, or if you wish, the phasor's tip, follows a
corkscrew path spiraling along, and centered about, the time axis.  Th
o
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Figure 6.  The motion of the ej2πfot phasor (a), and phasor 's tip (b). 

y 

plementations of modern-day digital communications systems are based on this property! 

um 
 and e-j2πfot/2,  rotating in opposite directions 

bout, and moving down along, the time axis.   
 

 
Return to Figure 5(b) and ask yourself: "Self, what's the vector sum of those two phasors as the
rotate in opposite directions?"  Think about this for a moment...  That's right, the phasors' real 
parts will always add constructively, and their imaginary parts will always cancel.  This means 
that the summation of these ej2πfot and e-j2πfot phasors will always be a purely real number.  
Im
 
To emphasize the importance of the real sum of these two complex sinusoids we'll draw yet 
another picture.  Consider the waveform in the three-dimensional Figure 7 generated by the s
of two half-magnitude complex phasors, ej2πfot/2
a
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Figure 7.  A cosine represented by the sum of two rotating complex phasors. 

it's clear now why the cosine wave can be equated to the sum of 
 
Thinking about these phasors, 
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o complex exponentials by 
 

 cos(2πfot)  =  
j2πfot e-j2πfot

2

tw

 e +   

  =  
j ot

2
 e 2πf   

  +  
-j fot

2
 e 2π   

 . (10)  

e 

e 
lgebra exercise and show that a real sinewave is also the sum of two complex exponentials as 

 

 sin(2πfot)  =  
j2πfo -j2πfot

2j

 
Eq. (10), a well-known and important expression, is also called one of Euler's identities.  W
could have derived this identity by solving Eqs. (7) and (8) for jsin(φ), equating those two 
expressions, and solving that final equation for cos(φ).  Similarly, we could go through that sam
a

 e t - e   

   =   
fot

2
 je-j2π   

  –  
fot

2
 jej2π   

 .  (11)  

t 

o equations, along with Eqs. (7) and (8), are the 
osetta Stone of quadrature signal processing.  

 

 
Look at Eqs. (10) and (11) carefully−they are the standard expressions for a cosine wave and a 
sinewave, using complex notation, seen throughout the literature of quadrature communications 
systems.  To keep the reader's mind from spinning like those complex phasors, please realize tha
the sole purpose of Figures 5 through 7 is to validate the complex expressions of the cosine and 
sinewave given in Eqs. (10) and (11).  Those tw
R

 cos(2πfot) =

e
2

ej2πfot

2
+

-j2πfot

 
 
We can now easily translate, back and forth, between real sinusoids and complex exponentials.  
Again, we are learning how real signals, that can be transmitted down a coax cable or digitized
and stored in a computer's memory, can be represented in complex number notation.  Yes, the 
constituent parts of a complex number are

 

 each real, but we're treating those parts in a special 
ay⎯we're treating them in quadrature. 

epresenting Quadrature Signals In the Frequency Domain

w
 
R  

the 
 Figure 8 tells us the 

les for representing complex exponentials in the frequency domain.   
 

 
Now that we know much about the time-domain nature of quadrature signals, we're ready to look 
at their frequency-domain descriptions.  This material will be easy for you to understand because 
we'll illustrate the full three-dimensional aspects of the frequency domain.  That way none of 
phase relationships of our quadrature signals will be hidden from view. 
ru
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Figure 8.  Interpretation of complex exponentials. 

 
We'll represent a single complex exponential as a narrowband impulse located at the frequency 
specified in the exponent.  In addition, we'll show the phase relationships between those complex 
exponentials along the real and imaginary axes.  To illustrate those phase relationships, a 
complex frequency domain representation is necessary.  With all that said, take a look at Figure 
9. 
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Figure 9.  Complex frequency domain representation of a cosine wave and sinewave. 
 
See how a real cosine wave and a real sinewave are depicted in our complex frequency domain 
representation on the right side of Figure 9.  Those bold arrows on the right of Figure 9 are not 
rotating phasors, but instead are frequency-domain impulse symbols indicating a single spectral 
line for single a complex exponential ej2πfot.  The directions in which the spectral impulses are 
pointing merely indicate the relative phases of the spectral components.  The amplitude of those 
spectral impulses are 1/2.  OK ... why are we bothering with this 3-D frequency-domain 
representation?  Because it's the tool we'll use to understand the generation (modulation) and 
detection (demodulation) of quadrature signals in digital (and some analog) communications 
systems, and those are two of the goals of this tutorial.  Before we consider those processes 
however, let's validate this frequency-domain representation with a little example. 
 
Figure 10 is a straightforward example of how we use the complex frequency domain.  There we 
begin with a real sinewave, apply the j operator to it, and then add the result to a real cosine 
wave of the same frequency.  The final result is the single complex exponential ej2πfot illustrating 
graphically Euler's identity that we stated mathematically in Eq. (7). 
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Figure 10.  Complex frequency-domain view of Euler's: ej2πfot = cos(2πfot) + jsin(2πfot). 
 
On the frequency axis, the notion of negative frequency is seen as those spectral impulses 
located at -2πfo radians/sec on the frequency axis.  This figure shows the big payoff: When we 
use complex notation, generic complex exponentials like ej2πft and e-j2πft are the fundamental 
constituents of the real sinusoids sin(2πft) or cos(2πft).  That's because both sin(2πft) and 
cos(2πft) are made up of ej2πft and e-j2πft components.  If you were to take the discrete Fourier 
transform (DFT) of discrete time-domain samples of a sin(2πfot) sinewave, a cos(2πfot) cosine 
wave, or a ej2πfot complex sinusoid and plot the complex results, you'd get exactly those 
narrowband impulses in Figure 10. 
 
If you understand the notation and operations in Figure 10, pat yourself on the back because you 
know a great deal about nature and mathematics of quadrature signals. 
 
Bandpass Quadrature Signals In the Frequency Domain 
 
In quadrature processing, by convention, the real part of the spectrum is called the in-phase 
component and the imaginary part of the spectrum is called the quadrature component.  The 
signals whose complex spectra are in Figure 11(a), (b), and (c) are real, and in the time domain 
they can be represented by amplitude values that have nonzero real parts and zero-valued 
imaginary parts.  We're not forced to use complex notation to represent them in the time 
domain—the signals are real.  
 
Real signals always have positive and negative frequency spectral components.  For any real 
signal, the positive and negative frequency components of its in-phase (real) spectrum always 
have even symmetry around the zero-frequency point.  That is, the in-phase part's positive and 
negative frequency components are mirror images of each other.  Conversely, the positive and 
negative frequency components of its quadrature (imaginary) spectrum are always negatives of 
each other.  This means that the phase angle of any given positive quadrature frequency 
component is the negative of the phase angle of the corresponding quadrature negative frequency 
component as shown by the thin solid arrows in Figure 11(a).  This 'conjugate symmetry' is the 
invariant nature of real signals when their spectra are represented using complex notation. 
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Figure 11.  Quadrature representation of signals: (a) Real sinusoid cos(2πfot + φ), (b) Real bandpass signal 
containing six sinusoids over bandwidth B; (c) Real bandpass signal containing an infinite number of 
sinusoids over bandwidth B Hz; (d) Complex bandpass signal of bandwidth B Hz. 

 
Let's remind ourselves again, those bold arrows in Figure 11(a) and (b) are not rotating phasors.  
They're frequency-domain impulse symbols indicating a single complex exponential ej2πft.  The 
directions in which the impulses are pointing show the relative phases of the spectral 
components. 
 
There's an important principle to keep in mind before we continue.  Multiplying a time signal by 
the complex exponential ej2πfot, what we can call quadrature mixing (also called complex mixing), 
shifts that signal's spectrum upward in frequency by fo Hz as shown in Figure 12 (a) and (b).  
Likewise, multiplying a time signal by e-j2πfot shifts that signal's spectrum down in frequency by 
fo Hz. 
 

(b) (c)(a)
Freq

0 fo
-fo

Quad. phase

In-phase

Freq

0 fo
-fo

Quad. phase

In-phase

Freq

0 fo
-fo

Quad. phase

In-phase

2fo

 
 

Figure 12.  Quadrature mixing of a signal: (a) Spectrum of a complex signal x(t), (b) Spectrum of x(t)ej2πfot, 
(c) Spectrum of x(t)e-j2πfot. 

 
 
A Quadrature-Sampling Example 
 
We can use all that we've learned so far about quadrature signals by exploring the process of 
quadrature-sampling.  Quadrature-sampling is the process of digitizing a continuous (analog) 
bandpass signal and translating its spectrum to be centered at zero Hz.  Let's see how this 
popular process works by thinking of a continuous bandpass signal, of bandwidth B, centered 
about a carrier frequency of fc Hz.   
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Figure 13.  The 'before and after' spectra of a quadrature-sampled signal. 
 
Our goal in quadrature-sampling is to obtain a digitized version of the analog bandpass signal, 
but we want that digitized signal's discrete spectrum centered about zero Hz, not fc Hz.  That is, 
we want to mix a time signal with e-j2πfct to perform complex down-conversion.  The frequency fs 
is the digitizer's sampling rate in samples/second.  We show replicated spectra at the bottom of 
Figure 13 just to remind ourselves of this effect when A/D conversion takes place. 
 
OK, ... take a look at the  following quadrature-sampling block diagram known as I/Q 
demodulation (or 'Weaver demodulation' for those folk with experience in communications 
theory) shown at the top of Figure 14.  That arrangement of two sinusoidal oscillators, with their 
relative 90o phase, is often called a 'quadrature-oscillator'.  
 
Those ej2πfct and e-j2πfct terms in that busy Figure 14 remind us that the constituent complex 
exponentials comprising a real cosine duplicates each part of Xbp(f) spectrum to produce the 
Xi(f) spectrum.  The Figure shows how we get the filtered continuous in-phase portion of our 
desired complex quadrature signal.  By definition, those Xi(f) and I(f) spectra are treated as 'real 
only'.     
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Figure 14.  Quadrature-sampling block diagram and spectra within the in-phase (upper) signal path. 
 
Likewise, Figure 15 shows how we get the filtered continuous quadrature phase portion of our 
complex quadrature signal by mixing xbp(t) with sin(2πfct). 
 

0
Freq

X  (f)q

0
Freq

Q(f)

-B/2

B/2

Freq0

Continuous
spectrum

Quadrature
continuous
spectrum

LP filtered
quadrature
continuous
spectrum

Negative due to the
minus sign of the sin's

X    (f)bp

Filtered imaginary part

Imaginary part

-fc

-2fc -f c fc

2fc

fc

B

-je j2πft

2

 
 

Figure 15.  Spectra within the quadrature phase (lower) signal path of the block diagram. 
 
Here's where we're going: I(f) - jQ(f) is the spectrum of a complex replica of our original 
bandpass signal xbp(t).  We show the addition of those two spectra in Figure 16. 
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Figure 16.  Combining the I(f) and Q(f) spectra to obtain the desired 'I(f) - jQ(f)' spectra. 
 
This typical depiction of quadrature-sampling seems like mumbo jumbo until you look at this 
situation from a three-dimensional standpoint, as in Figure 17, where the -j factor rotates the 
'imaginary-only' Q(f) by -90o, making it 'real-only'.  This -jQ(f) is then added to I(f). 
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Figure 17.  3-D view of combining the I(f) and Q(f) spectra to obtain the I(f) - jQ(f) spectra. 
 
The complex spectrum at the bottom Figure 18 shows what we wanted; a digitized version of the 
complex bandpass signal centered about zero Hz. 
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Figure 18.  The continuous complex signal i(t) - q(t) is digitized to obtain discrete i(n) - jq(n). 
 
 
Some advantages of this quadrature-sampling scheme are: 
 

-  Each A/D converter operates at half the sampling rate of standard real-signal sampling,  
-  In many hardware implementations operating at lower clock rates save power. 
-  For a given fs sampling rate, we can capture wider-band analog signals. 
-  Quadrature sequences make FFT processing more efficient due to a wider frequency range 

coverage. 
-  Because quadrature sequences are effectively oversampled by a factor of two, signal 

squaring operations are possible without the need for upsampling.  
-  Knowing the phase of signals enables coherent processing, and 
-  Quadrature-sampling also makes it easier to measure the instantaneous magnitude and 

phase of a signal during demodulation.  
 
Returning to the block diagram reminds us of an important characteristic of quadrature signals.  
We can send an analog quadrature signal to a remote location; to do so we use two coax cables 
on which the two real i(t) and q(t) signals travel.  (To transmit a discrete time-domain quadrature 
sequence, we'd need two multi-conductor ribbon cables as indicated by Figure 19.) 
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Figure 19.  Reiteration of how quadrature signals comprise two real parts. 
 
To appreciate the physical meaning of our discussion here, let's remember that a continuous 
quadrature signal xc(t) = i(t) + jq(t) is not just a mathematical abstraction.  We can generate xc(t) 
in our laboratory and transmit it to the lab down the hall.  All we need is two sinusoidal signal 
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generators, set to the same frequency fo.  (However, somehow we have to synchronize those two 
hardware generators so that their relative phase shift is fixed at 90o.)  Next we connect coax 
cables to the generators' output connectors and run those two cables, labeled 'i(t)' for our cosine 
signal and 'q(t)' for our sinewave signal, down the hall to their destination 
 
Now for a two-question pop quiz.  In the other lab, what would we see on the screen of an 
oscilloscope if the continuous i(t) and q(t) signals were connected to the horizontal and vertical 
input channels, respectively, of the scope?  (Remembering, of course, to set the scope's 
Horizontal Sweep control to the 'External' position.)   
 

i(t) = cos(2πfot)
q(t) = sin(2πfot) Vert. In

Horiz. In

O-scope

 
 

Figure 20.  Displaying a quadrature signal using an oscilloscope. 
 
Next, what would be seen on the scope's display if the cables were mislabeled and the two 
signals were inadvertently swapped?   
 
The answer to the first question is that we’d see a bright 'spot' rotating counterclockwise in a 
circle on the scope's display.  If the cables were swapped, we'd see another circle, but this time it 
would be orbiting in a clockwise direction.  This would be a neat little demonstration if we set 
the signal generators' fo frequencies to, say, 1 Hz. 
 
This oscilloscope example helps us answer the important question, "When we work with 
quadrature signals, how is the j-operator implemented in hardware?"  The answer is that the j-
operator is implemented by how we treat the two signals relative to each other.  We have to treat 
them orthogonally such that the in-phase i(t) signal represents an East-West value, and the 
quadrature phase q(t) signal represents an orthogonal North-South value.  (By orthogonal, I 
mean that the North-South direction is oriented exactly 90o relative to the East-West direction.)  
So in our oscilloscope example the j-operator is implemented merely by how the connections are 
made to the scope.  The in-phase i(t) signal controls horizontal deflection and the quadrature 
phase q(t) signal controls vertical deflection.  The result is a two-dimensional quadrature signal 
represented by the instantaneous position of the dot on the scope's display. 
 
The person in the lab down the hall who's receiving, say, the discrete sequences i(n) and q(n) has 
the ability to control the orientation of the final complex spectra by adding or subtracting the 
jq(n) sequence as shown in Figure 21. 
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Figure 21.  Using the sign of q(n) to control spectral orientation. 
 
The top path in Figure 21 is equivalent to multiplying the original xbp(t) by e-j2πfct, and the bottom 
path is equivalent to multiplying the xbp(t) by ej2πfct.  Therefore, had the quadrature portion of our 
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quadrature-oscillator at the top of Figure 14 been negative, -sin(2πfct), the resultant complex 
spectra would be flipped (about 0 Hz) from those spectra shown in Figure 21. 
 
While we’re thinking about flipping complex spectra, let’s remind ourselves that there are two 
simple ways to reverse (invert) an x(n) = i(n) + jq(n) sequence’s spectral magnitude.  As shown 
in Figure 21, we can perform conjugation to obtain an x'(n) = i(n) - jq(n) with an inverted 
magnitude spectrum.  The second method is to swap x(n)’s individual i(n) and q(n) sample 
values to create a new sequence y(n) = q(n) + ji(n) whose spectral magnitude is inverted from 
x(n)’s spectral magnitude.  (Note, while  x'(n)’s and y(n)’s spectral magnitudes are equal, their 
spectral phases are not equal.) 
 
Conclusions 
This ends our little quadrature signals tutorial.  We learned that using the complex plane to 
visualize the mathematical descriptions of complex numbers enabled us to see how quadrature 
and real signals are related.  We saw how three-dimensional frequency-domain depictions help 
us understand how quadrature signals are generated, translated in frequency, combined, and 
separated.  Finally we reviewed an example of quadrature-sampling and two schemes for 
inverting the spectrum of a quadrature sequence. 
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Answer to trivia question just following Eq. (5) is: The scarecrow in Wizard of Oz.  Also, I say 
Thanks to Grant Griffin whose suggestions improved the value of this tutorial. 
 
Have you heard this little story?   

While in Berlin, Leonhard Euler was often involved in philosophical debates, especially with 
Voltaire.  Unfortunately, Euler's philosophical ability was limited and he often blundered to the 
amusement of all involved.  However, when he returned to Russia, he got his revenge.  Catherine 
the Great had invited to her court the famous French philosopher Diderot, who to the chagrin of 
the czarina, attempted to convert her subjects to atheism.  She asked Euler to quiet him.  One day 
in the court, the French philosopher, who had no mathematical knowledge, was informed that 
someone had a mathematical proof of the existence of God.  He asked to hear it.  Euler then 
stepped forward and stated:  

"Sir, 
a + bn

n  = x, hence God exists; reply!"  Diderot had no idea what Euler was talking about. 

However, he did understand the chorus of laughter that followed and soon after returned to France. 
 
(Above paragraph was found on a terrific website detailing the history of mathematics and mathematicians: 
http://www.shu.edu/academic/arts_sci/Undergraduate/math_cs/sites/math/reals/history/euler.html) 
 
Although it's a cute story, serious math historians don't believe it.  They know that Diderot did 
have some mathematical knowledge and they just can’t imagine Euler clowning around in that 
way. 
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