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[dsp TIPS&TRICKS]
Richard Lyons

T
his article discusses the esti-
mation of time-domain sine-
wave peak amplitudes based 
on the fast Fourier trans-
form (FFT) data. Such an 

operation sounds simple, but the scallop-
ing loss characteristic of FFTs compli-
cates the procedure. Here we present 
novel multiplier-free methods to accu-
rately estimate sinewave amplitudes, 
based on FFT data, that greatly reduce 
scalloping loss problems.

FFT SCALLOPING LOSS REVISITED
There are many applications that require 
the estimation of a time-domain sine-
wave’s peak amplitude based on FFT 
data. Such applications include oscillator 
and analog-to-digital converter perfor-
mance measurements, as well as stan-
dard total harmonic distortion (THD) 
testing. However, the scalloping loss 
inherent in FFTs creates an uncertainty 
in such time-domain peak amplitude 
estimations. This section provides a brief 
review of FFT scalloping loss.

As most of you know, if we perform 
an N-point FFT on N real-valued time-
domain samples of a discrete sinewave, 
whose frequency is an integer multiple 
of f s/N  (f s is the sample rate in hertz), 

the peak magnitude of the sinewave’s 
 positive-frequency spectral component 
will be 

 M5
A # N

2
, (1)

where A is the peak amplitude of the 
time-domain sinewave. That phrase 
“whose frequency is an integer multiple 
of f s/N” means that the sinewave’s fre-
quency is located exactly at one of the 
FFT’s bin centers.

Now, if an FFT’s input sinewave’s 
frequency is between two FFT bin 
centers (equal to a noninteger multi-
ple of f s/N ), the FFT magnitude of 
that spectral component will be less 
that the value of M in (1). Figure 1 
illustrates this behavior. Figure 1(a) 
shows the frequency responses of 
individual FFT bins where, for sim-
plicity, we show only the main lobes 
(no side lobes) of the FFT bins’ 

responses. What this means is that if 
we were to apply a sinewave to an FFT 
and scan the frequency of that sin-
ewave over multiple bins, the magni-
tude of the FFT’s largest normalized 
magnitude sample value will follow 
the curve in Figure 1(b). That curve 
describes what is called the “scallop-
ing loss” of an FFT [1]. 

(As an aside, the word scallop is not 
related to my favorite shellfish. As it 
turns out, some window drapery, and 
tablecloths, do not have linear borders. 
Rather they have a series of circular seg-
ments, or loops, of fabric defining their 
decorative borders. Those loops of fabric 
are called scallops.) 

What Figure 1(b) tells us is that if we 
examine the N -point FFT magnitude 
sample of an arbitrary-frequency, peak 
amplitude = A sinewave, that spectral 
component’s measured peak magnitude 
Mpeak can be in anywhere in the range of:
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[FIG1] FFT frequency magnitude responses: (a) individual FFT bins and (b) overall 
FFT response. Date of publication: 17 February 2011
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depending on the frequency of that 
 sinewave. This is shown as the 
rectangular window  curve in Figure 2, 
where the maximum scalloping error 
occurs at a frequency midpoint between 
two FFT bins. The variable M in Figure 2 is 
the M from (1). So if we want to determine 
a sinewave’s time-domain peak ampli-
tude A, by measuring its maximum FFT 
spectral peak magnitude Mpeak, our esti-
mated value of A, from (1), using

 A5
2Mpeak

N
 (3)

can have an error as great as 36.3%. In 
many spectrum analysis applications such 
a large potential error, equivalent to 3.9 
dB, is unacceptable. As shown by the mag-
nitude-normalized curves in Figure 2, 
Hanning and Hamming windowing of the 
FFT input data reduce the unpleasant fre-
quency-dependent fluctuations in a mea-
sured spectral Mpeak value but not nearly 
enough to satisfy many applications.

One solution to this frequency-
dependent, FFT-based, measured ampli-
tude uncertainty is to multiply the 
original N  time-domain samples by an 
N-sample flat-top window function and 
then perform a new FFT on the win-
dowed data. Flat-top window functions 
are designed to overcome the scallop loss 
inherent in rectangular-windowed FFTs. 
While such a flat-top-windowed FFT 
technique will work, there are more 
computationally efficient methods to 
solve our signal peak amplitude estima-
tion uncertainty problem.

FREQUENCY-DOMAIN 
CONVOLUTION 
Because multiplication in the time domain 
is equivalent to convolution in the fre-
quency domain, we can convert rectangu-
lar-windowed (no windowing) FFT samples 
to windowed-FFT samples by way of 
 convolution. For example, consider an 
N-point w 1n 2  window sequences whose 
time-domain samples are generated using

 w 1n 2 5 a
K21

k50

1 2 1 2 khkcos 12pkn/N 2 , (4)

where the w(n) sequence’s generating 
polynomial has an integer K number of 
hk coefficients.

Many window functions, including 
Hanning, Hamming, Blackman, and flat-
top, are generated using (4). One popular 
flat-top window sequence, generated using 
(4), is Matlab’s flattopwin 1N 2  routine 
where the hk polynomial coefficients are [2]

 h0  5 0.2156, h1  5 0.4160, 

 h2  5 0.2781, h3  5 0.0836, 

 h4  5 0.0069. (5)

(Very similar flat-top window generating 
coefficients are recommended in [3].) 
Thus in implementing frequency-domain 
convolution, to compute a single flat-top 
windowed Xft 1m 2  spectral sample from 
rectangular-windowed X(m) spectral 
samples, we would compute

Xft 1m 2 5 h4

2
X 1m2 4 2 2 h3

2
X 1m2 3 2

 1
h2

2
X 1m2 2 2  2 h1

2
X 1m2 1 2

 1 h0X 1m 2 2 h1

2
X 1m1 1 2    

 1
h2

2
X 1m1 2 2 2 h3

2
X 1m1 3 2

 1
h4

2
X 1m1 4 2 , (6)

where X (m) is the rectangular- 
windowed FFT sample having the largest 
magnitude,  and m is  the FFT’s 
 frequency-domain sample index.

If we apply (6) to rectangular-windowed 
X(m) FFT samples and compute the flat-
top windowed maximum FFT spectral peak 

magnitude Mpeak 5 |Xft1m 2|, the estimated 
value of A from (3) will have an error of no 
more than 0.0166 dB. Such a small error is 
represented by the very flat, nearly ideal, 
solid curve labeled as flat-top in Figure 2. 

That appealing flat-top curve in 
Figure 2 is the good news associated 
with the frequency-domain flat-top win-
dow convolution in (6). The bad news is 
that each computation of an Xft 1m 2 sam-
ple requires, assuming we combine 
terms having identical coefficients, 18 
real multiplies and 16 real additions. In 
what follows, we show how to drasti-
cally reduce the computational work-
load in computing an Xft 1m 2  sample. 

IMPROVED CONVOLUTION 
COEFFICIENTS
Reference [4], which discusses many differ-
ent sets of window generating- polynomial 
coefficients, presents the following useful 
set of flat-top window coefficients

 h0 = 0.26526, h1 = 0.5, h2 = 0.23474 (7)

collectively called the SFT3F coefficients. 
Thus to obtain a single flat-top windowed 
Xft(m) spectral sample from rectangular 
windowed X(m) samples, based on the 
SFT3F coefficients in (7), we compute

Xft 1m 2 5 h2

2
X 1m2 2 2  2 h1

2
X 1m2 1 2

 1 h0X 1m 2 2 h1

2
X 1m1 1 2

 1
h2

2
X 1m1 2 2 . (8)
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[FIG2] Windowed-FFT, bin-to-bin, frequency magnitude responses.
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The frequency-dependent scalloping 
loss of the floating-point SFT3F coeffi-
cients is shown as the black dotted 
curve in Figure 3. The variable M  in 
Figure 3 is the M from (1). The com-
putation of an X ft 1m 2  sample using (8) 
results in an estimated value of A, 
from (3), having a scalloping error in 
the range of –0.0082 dB to +0.0082 dB. 
We cal l  the coef f ic ients  in  (7) 
“improved” because the computation 
in (8) requires only ten real multiplies 
and eight real additions.

Notice that flat-top window coeffi-
cients, such as those (7), have the 
interesting characteristic that they 
have both a scalloping loss and a scal-
l op ing  ga in  ve r sus  f r equency. 

(Compare the black dotted curve in 
Figure 3 to the lossy Hanning, 
Hamming, and rectangular curves in 
Figure 2 whose Mpeak values are always 
less than M. 2  
FURTHER COMPUTATIONAL 
IMPROVEMENTS
We can take three steps to further reduce 
the computational workload of comput-
ing an Xft(m) sample using (8). 

FIRST STEP
If we divide the coefficients in (7) by the 
first coefficient, h0, we obtain the new 
coefficients

 h0 = 1.0, h1 = 1.88494, h2 = 0.88494. (9)

The coefficients in (9) eliminate the 
amplitude gain loss of the flat-top 
coefficients in (8) without changing 
their scalloping loss compensation 
performance. Given the flat-top win-
dow generating polynomial coeffi-
cients in (9), computing an X ft(m) 
sample proceeds as

Xft 1m 2 5 X 1m 2 2 1.88494
2

 3 3X 1m2 1 2 1 X 1m1 1 2 4
 1

0.88494
2

 3 3X 1m2 2 2 1 X 1m1 2 2 4.
 (10)

The coefficients in the convolution 
expression in (10) are 

 g05 1.0,

 g15 2
1.88494

2
5 2 0.94247,

 g25
0.88494

2
5 0.44247.  (11)

SECOND STEP
Next, we convert the coefficients in (11) 
to binary representation to simplify our 
processing by replacing the multiplica-
tions in (10) by arithmetic right-shifts. 
Doing so, the nonunity coefficients in 
(11) become

 g1 5 –0.94247

 5 –0.1111 0001 0100 0101…

 g2 5 0.44247

 5 0.0111 0001 0100 0101… . (12)

The le f tmost  sequence of  three 
 consecutive zeros in coefficients g1 
and g2 suggest that we can represent 
those coefficients with four fractional 
bits without inducing too much trun-
cation error.

To simplify our equations, let’s repre-
sent our five unwindowed frequency-
domain samples in (10) with

 c 5 X 1m 2
 p 5 X 1m2 1 2  + X 1m1 1 2
 q 5 X 1m2 2 2  + X 1m1 1 2
 r 5 q2 p.

0.997 M

M

0.998 M

0.999 M

1.001 M
S

pe
c.

 M
ag

., 
M

pe
ak

FrequencyCenter
of FFT
Bin m

Center
of FFT

Bin m + 1

SFT3F Floating-pt
SFT3F Four Bits
SFT3F Eight Bits

[FIG3] Bin-to-bin frequency magnitude response of SFT3F coefficients.
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[FIG4] Multiplier-free scalloping loss compensation using 4-b coefficients in (14).
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Those assignments convert (10), using 
the first four fractional bits for g1 and g2 
in (12), to

Xft 1m 2 5 c2
1
2

 p1
1
4

 r1
1
8

 r1
1

16
 r, (13)

allowing us to replace the multiplica-
tions in (10) with binary right-shifts. 
However, rather than implement the 
four separate binary right-shifts in (13), 
we can use canonical signed digit (CSD) 
notation to further streamline our com-
putations. Using CSD, (13) becomes

 Xft 1m 2 5 c2 p1
1
2

 q2
1

16
 r, (14)

which is equivalent to, but simpler to 
compute than, (13). The signal flow 
implementation of (14) is given in 
Figure 4, and its performance is shown 
as the red dashed curve in Figure 3.

Finally, we compute Mpeak, using 
(14), as

 Mpeak = |Xft 1m 2 | (15)

and use that Mpeak value in (3) to com-
pute our desired A, the peak amplitude 
of the FFT’s time-domain sinewave 
input. The computation of an Mpeak value 
using (14) and (15) results in an estimat-
ed value of A, from (3), having a scallop-
ing error in the range of –0.0229 dB to 
+0.003 dB.

We can achieve 8-b accuracy of our 
binary coefficients in (12) by adding one 
more term to the approximation in (14) as

 Xft 1m 2 5 c2 p1
1
2

 q2
1

16
 r1

1
256

 r.

 (16)

The signal flow implementation of 
(16) is given in Figure 5(a), and its 
performance is shown as the solid 
blue curve in Figure 3. The computa-
tion of an X ft(m) sample using (16) 
results in an estimated value of A , 
from (15) and (3), having a scalloping 
error in the range of –0.0113 dB to 
+0.0069 dB. That’s almost worth writ-
ing home about because the perfor-

mance of the multiplier-free (16) is 
superior to the multiply-intensive 
computation in (6). 

THIRD STEP 
In our relentless pursuit of accuracy, 
we employ one last binary arithmetic 
trick to reduce right-shift truncation 
error. Notice in Figure 5(a) that one of 
our complex data samples experiences 
a right-shift by 8 b. To reduce the trun-
cation error of an 8-b right shift, we 
use Horner’s rule to convert (16) to

 Xft 1m 2 5 c2 p1
1
2
aq2

1
8
ar2

1
16

 rbb.

 (17)

This way, no data sample experiences a 
truncation error greater than a 4-b 
right-shift. The signal flow implementa-
tion of (17) is given in Figure 5(b) and 
its performance is equal to that of (16).

To consolidate what we’ve covered so 
far, Table 1 shows the computational 

[FIG5] Scalloping loss compensation using 8-b coefficients: (a) initial implementation and (b) reduced truncation error implementation.
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 workload, and error performance in esti-
mating a sinewave amplitude A, of the var-
ious scalloping loss compensation 
methods.

IMPLEMENTATION CONSIDERATIONS
There are two issues to keep in mind 
when using the above scalloping loss 
compensation methods.

 ■ The flat-top window frequency-
domain convolutions are most useful 
in accurately measuring the time-
domain amplitude of a sinusoidal sig-
nal when that signal’s spectral 
component is not contaminated by 
side lobe leakage from a nearby spec-
tral component. For example, if a pos-
itive-frequency spectral component is 
low in frequency, i.e., located in the 
first few FFT bins, leakage from the 
spectral component’s corresponding 
negative-frequency spectral compo-
nent will contaminate that positive-
frequency spectral component. As 
such, empirical testing indicates that 
the convolutions in Figures 4 and 5 
should not be used for frequencies 
below the sixth FFT bin or above the 
1N /2–5)th FFT bin. 

 ■ The flat-top window frequency-
domain convolutions discussed 
above are most useful when the FFT 
spectral component being measured 
is well above the background spec-
tral noise floor.

CONCLUSION
We discussed the inherent scalloping 
loss uncertainty (potential error) of esti-
mating sinewave peak amplitudes based 
on FFT spectral data. Then we briefly 
discussed the performance, and compu-
tational workload, of frequency-domain 
convolution using traditional five-term 
flat-top window coefficients to drastically 
reduce sinusoidal peak amplitude 
 measurement uncertainty. Next we 
 demonstrated a little-known three-term 
 flat-top window polynomial that has very 
good scalloping loss compensation and a 
reduced computational workload. 
Finally, we presented a series of binary 
arithmetic tricks yielding a high- 
performance,  efficient, multiplier-free 
implementation of scalloping loss com-
pensation. Matlab and C-code implemen-
tations of this material are available at: 
http://www. signalprocessingsociety.org/

publications/periodicals/spm/ columns-
resources/#tips.
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[TABLE 1] COMPUTATIONAL WORKLOAD PER Xft(m) SAMPLE AND  PERFORMANCE. 

SINGLE COMPUTATION
EQUATION REAL MULTS REAL ADDS

BINARY 
RIGHT-SHIFTS

MAX. SCALLOPING 
ERROR (DB)

(6) 18 16 — 0.0166
(8) 10 8 — 0.0082
(10) 4 6 — 0.0082
(14) — 12 4 0.0228

(16) AND (17) — 14 6 0.0113
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